University:

Email Address:

Phone Number:

Linear Networks Analysis and Synthesis Business, Management & Finance Program Spring 2020 Semester - Madrid

Flight Credit Get a Flight Credit worth up to $350 when you apply with code* by May 6, 2024

Linear Networks Analysis and Synthesis

Linear Networks Analysis and Synthesis Course Overview

OVERVIEW

CEA CAPA Partner Institution: Universidad Carlos III de Madrid
Location: Madrid, Spain
Primary Subject Area: Mathematics
Instruction in: English
Course Code: 13841
Transcript Source: Partner Institution
Course Details: Level 200
Recommended Semester Credits: 3
Contact Hours: 42
Prerequisites: Linear Algebra (1º) Systems and Circuits (1º) Linear Systems (2º) Ampliación de matemáticas (2º) Electronic Components and Circuits (2º)

DESCRIPTION

Unit 1: Systematic Linear Network analysis in stationary sinusoidal regimes with mesh and nodal analysis.

1.1. Description of RLC components in SSR.(PO a, PO e, PO g, PO k)
1.2. Using systematic methods for linear network analysis
1.2.1. Mesh analysis
1.2.2. Nodal analysis
1.3. Networks with mutual inductance and transformers
1.4. Real, reactive, and apparent powers. Complex conjugate matching.

Unit 2: Linear Network analysis using the unilateral Laplace transform. (PO a, PO e, PO g, PO k)

2.1. The unilateral Laplace transform
2.2. The generalization of analysis theorems to the Laplace domain. Use in network analysis: free, driven, stationary and transient regimes.
2.3. Transfer functions. Frequency response. Phase and amplitude response.

Unit 3: Two-port network analysis PO a, PO e, PO g, PO k)

3.1. Two-port description: [z], [y] and [F] parameters.
3.2. Two-port interconnection.
3.3. Image parameters.
3.4. Loaded two-ports. Insertion and transmission losses. Matched two-ports. Conjugate matching. Logarithmic measurement units: Nepers and decibels.

Unit 4: An introduction to the synthesis of passive, analog filters. (PO a, PO c, PO e, PO g, PO k)

4.1. Filtering. Phase and group delay. Phase equalization. Filter types. Filter specification.
4.2. Filter characterization functions.
4.3. Low-pass filter approximation theory. Parameter normalization. Frequency transformations.
4.4. Butterworth and Chebychev filter synthesis: low-pass, high-pass, band-pass and suppressed band.

Unit 5: An introduction to the synthesis of digital filters. (PO a, PO c, PO e, PO g, PO k)

5.1. A comparison with analog filters.
5.2. Z domain transfer functions with infinite and finite impulse responses. Difference equations. Direct architectures. Stability.
5.2. FIR filter synthesis from analog synthesis.
5.3. Analog filter simulation with digital filters.

Receive a $350 Flight Credit when you apply by May 06, 2024

Get your flight credit code and access to Passbook in two easy steps. With Passbook, you can track your favorite programs and courses, save flight credits, and watch videos on the destination you're interested in.

Apply Now

Step 1 of 2

Step 2 of 2


*By providing your mobile number, you agree to receive recurring text messages from CEA CAPA Education Abroad notifying you of important program deadlines. Message and data rates may apply.

Privacy Policy   |   Mobile Terms   |   Flight Credit Rules

Your flight credit has been added to your Passbook. Apply now or view your Passbook to begin the next step in your journey.

Speak with an
Admissions Advisor

Schedule an appointment to speak with a study abroad expert.

Book Appointment
LET'S CHAT