Our Phoenix Support Center phone lines will be down on Friday at 4pm PST until 6PM PST on Sunday May 18th for system maintenance! However, our emergency lines remain open for any health and safety emergency. Thank you in advance for your patience!
Claim up to $1,250 in flight credits!
Get up to $1,250 in flight credits or grants toward study or internship programs abroad when you apply by June 30, 2025. See our Official Rules for full details.
Introduction. Dimensional Analysis - Definition of a turbomachine. Different kinds and applications. - Main defining variables, dimensions and fluid properties. Units. - Dimensional analysis and performance laws. Compressible flow analysis. Specific speed: machine selection. Model testing.
Fluid mechanics and thermodynamics equations - Equations in integral form. - Euler equations for turbomachines. - Definition of Rothalpy. - Definition of adiabatic / polytropic efficiency. Enthalpy-entropy diagrams. - Equations in differential form.
Axial flow turbines: two-dimensional stage theory - Dimensional analysis of a single turbine stage. Velocity triangles, loading and flow parameters, reaction. Repeating stage hypothesis. - Thermodynamics of a turbine stage. Total-to-total stage efficiency. Row loss-stage efficiency relation - Reaction. Effect on efficiency. Optimum reaction - Smith chart. Empirical versus reversible. - Flow characteristics of a multistage turbine. - Stress/Cooling/Detailed design. Design criteria.
Axial flow compressors and fans: two-dimensional stage theory - Dimensional analysis of a single compressor stage. Velocity triangles, loading and flow parameters, reaction. Repeating stage hypothesis. - Thermodynamics of a compressor stage. Total-to-total stage efficiency. Row loss-stage efficiency relation. - Loading-Flow coefficient chart. Reaction choice. Lift and Drag in terms of ¿ and ¿. Diffusion Factor and solidity selection. Estimation of compressor efficiency. Simplify off-design performance. - Blade element theory. - Stall and surge phenomena.
Three-dimensional flow in Axial Turbomachines - Theory of radial equilibrium. The indirect problem: free-vortex flow, forced-vortex flow, general whirl distribution. The direct problem. - Compressible flow through a blade-row. - Constant specific mass flow. - Off-design performance of a stage (free-vortex turbine). - Actuator disc approach. Blade-row interactions. Computer methods solving through-flow problem. - Secondary flows. Loss, angles and helicity. - Three-dimensional losses. Types and models. - Three-dimensional design features. Lean, sweep and bow.
Centrifugal compressors, fans and pumps - Introduction and definitions. Centrifugal compressor parts. - Theoretical analysis of a centrifugal compressor. Dimension-less performance parameters. Inlet, impeller and diffuser equations. - Optimum design of a centrifugal compressor inlet. - Radial flow turbo-machine blading design/selection - Slip factor. Correlations. - Performance of centrifugal compressors. - Diffuser system. Vane and vane-less diffusers. - Chocking in centrifugal compressor stage.
Radial turbines - Introduction. Types of inward flow radial turbine. - Thermodynamics of the 90 degrees IFR turbine - Basic rotor design. Rotor efficiency definition. Mach number relations. Loss coefficients. - Optimum efficiency considerations. Minimum number of blades. - Design criteria. Pressure ratio limits.
Get a Flight Credit worth up to $1,250 when you apply with code* by June 30, 2025